Towards Multi-tenant GPGPU: Event-driven Programming
Model for System-wide Scheduling on Shared GPUs

Yusuke Suzuki
Keio University
yusuke.suzuki@
sslab.ics.keio.ac.jp

Hiroshi Yamada
Tokyo University of Agriculture
and Technology

hiroshiy@cc.tuat.ac.jp

Shinpei Kato
Nagoya University
shinpei@is.nagoya-
u.ac.jp

Kenji Kono
Keio University
kono@ics.keio.ac.jp

ABSTRACT

Graphics processing units (GPUs) are attractive to the general-

purpose computing (GPGPU) beyond the graphics purpose.
Sharing GPUs among such GPGPU applications is a key
requirement especially for cloud platforms whose resources
are utilized by various cloud users. However, consolidat-
ing recent GPU applications, referred to as GPU eaters,
on a GPU poses a new challenge. Such advanced appli-
cations are designed based on the assumption that only one
GPU application runs on a GPU at a time. In this pa-
per, we present GLoop, a GPGPU framework that allows
multiple GPU eaters to share a GPU. GLoop offers an
event-driven programming model that generates scheduling
points in GPU kernels. It achieves resource isolation among
GPU applications and schedules applications by suspend-
ing/resuming GPU kernels only if necessary to reduce the
number of kernel launches. The preliminary experiments
demonstrate that GLoop model is applicable to a GPU eater.
The results also show that GLoop enables two GPGPU appli-
cations to run concurrently on a shared GPU by interleaving
GPU kernel execution.

1. INTRODUCTION

Graphics processing units (GPUs) are attractive process-
ing devices for not only graphics purposes but also general-
purpose computing. General-purpose computing on GPUs
(GPGPU) is appealing in various application domains, such
as scientific simulations [IH, 25, network systems [@, 0], file
systems [26,27], web servers [l], database management sys-
tems [8,R, 02, 24], complex control systems [d,227], and au-
tonomous vehicles [B,I6].

Sharing GPUs among such GPGPU applications is a key
requirement for cloud platforms whose resources are uti-
lized by various cloud users. Consolidating GPGPU appli-
cations on a GPU brings several benefits such as more effi-
cient GPU utilization with fewer GPUs. Recent research has
this goal, GPU resource managers including GPU command-
based schedulers [I1,07,28], novel GPU kernel launchers [,
23], context funneling [9,&1], and persistent threads ap-
proaches [8] have been studied.

However, recent GPGPU software infrastructure poses a
new challenge for consolidation, where only one GPU ap-
plication is assumed to run on a GPU at a time. Scientific
applications composed of long-running GPU kernels [IH, 25]
starve applications co-located on a shared GPU. To make

matters worse, applications polling in GPU kernels are be-
coming common in recent research software. For example,
the GPUfs- [26] and GPUnet-based [I3] applications poll
completions of 1/O requests on the GPU. In the persistent
threads approach [8], worker GPU thread blocks continu-
ously poll their work queues on GPU. Since these appli-
cations, referred to as GPU eaters, do not provide schedul-
ing points, one application can easily monopolize a shared
GPU. Although dividing a GPU kernel of the applications
into numerous small GPU requests provides more frequent
scheduling opportunities, applications’ performances are sig-
nificantly degraded due to having more kernel launches whose
cost is high.

This paper presents GLoop, a GPGPU framework that
enables us to host advanced GPU applications on a shared
GPU. GLoop provides an event-driven programming model
for GPU kernels. This model allows GPU applications to
inherit the high functionality of the GPU eaters while gen-
erating scheduling points. GLoop achieves GPU resource
isolation among GPU applications and schedules each GPU
kernel by suspending/resuming the GPU kernels only if it is
necessary to minimize kernel launches.

We implemented a prototype of GLoop on the non-modified
proprietary NVIDIA driver and CUDA 7.5 toolkit. The pre-
liminary experiments show that GLoop is applicable to a
GPU eater, grep, and its performance is comparable to the
original grep with GPUfs. The experimental results also
reveal that GLoop successfully interleaves two GPU applica-
tions on a shared GPU.

2. MOTIVATION
2.1 GPU Eaters

Numerous researchers have studied how GPGPU applica-
tions can be more effective [B, 3,5, 25,26]. For example,
GPUfs [26] exposes file systems APIs to a GPU program
to efficiently execute a GPU application involving file op-
erations and facilitate its development. GPUnet [I3] also
provides a socket abstraction and APIs suitable for GPU
processing. In the persistent threads model [3], a maximum-
sized grid is launched on a GPU, and its thread blocks con-
tinuously fetch GPU tasks from work queues to execute them
without costly kernel launches. GPGPU applications per-
forming a scientific simulation on a GPU typically run for a
long time [IH, 25]).

Unfortunately, these application developers implicitly as-

Table 1: Comparison of GLoop to other previous work.

Consolidating GPU eaters.

Resource Isolation [Proprietary GPGPU stack

GLoop

V

PTask [23]

TimeGraph [[M], Gdev], GPUvm [PR]

Disengaged scheduling [T7], Elastic kernels [20]

<

NVIDIA MPS [¥], Context funneling [B1]

Persistent threads [B]

<4<

GPUpIO [37]

SO OGCSERNN

V4

sume that only one GPU application runs on a GPU at a
time. Consolidating these types of applications, called GPU
eaters, on a shared GPU is an interesting challenge. Since
a GPU is a non-preemptive device, GPU contexts cannot
be switched like processes running on a CPU. GPUfs and
GPUnet make their applications poll the I/O event to avoid
costly GPU kernel launches so that the other GPU applica-
tions cannot do anything until the running application com-
pletes. We cannot execute two or more persistent threads
applications concurrently since the thread blocks of one ap-
plication infinitely run over GPU tasks. Many of the sci-
entific GPGPU applications launch their own long-running
kernel that monopolizes a GPU typically for seconds, min-
utes, or hours.

2.2 Previous Work

Current GPU resource managers aim to share GPU re-
sources among GPU applications, but these resource man-
agers are inherently of limited use when executing the GPU
eaters concurrently on a GPU. GPUvm [28] and Time-
Graph [I0] offer a command-based scheduler that issues GPU
commands received from virtual machines (VMs) or pro-
cesses based on their scheduling policy. Disengaged sched-
uler [7] schedules GPU commands with a sophisticated
probabilistic model. Even with these command-based sched-
ulers, a GPU eater issuing commands for polling exclusively
uses a shared GPU. To avoid this situation, we have to re-
design such applications to issue numerous GPU commands
instead of one polling command at the expense of a perfor-
mance penalty caused by their GPU kernel launches.

Gdev [IT] multiplexes a GPU device at the operating sys-
tem (OS) level. It also has a GPU scheduler whose schedul-
ing point is GPU kernel launches. If a GPU kernel is run-
ning for a long time, the Gdev scheduler assigns long slices
of time to other GPU applications’ kernels to achieve fair
GPU utilization. PTask [23], where a GPGPU application
is designed as a data flow graph consisting of GPU kernel
modules, schedules GPU kernels at GPU kernel launches.
The elastic kernel [20] transforms physical thread blocks to
logical thread blocks and dispatches them to physical re-
sources. It offers time-slicing by adjusting the amount of log-
ical thread blocks executed in one launch. These schedulers
suffer from the same problem as the command-based sched-
ulers; sharing a GPU with the schedulers requires that run-
ning GPU applications issue small GPU requests for schedul-
ing point generation.

GPUpIO [82] achieves I/O-driven preemption among GPU
applications by instrumenting the code with the save and re-
store procedures. Instead of waiting for I/O completions in
a polling manner, an inserted procedure saves the state of
the executing thread block, finishes it, and executes another
GPU kernel. When the I/O operation is completed, GPU-
pIO restores the saved state of the thread block. While
GPUpIO is effective for polling-based GPU eaters, long-
running kernels such as scientific calculation and persistent

threads can still monopolize a shared GPU.

Multi-process service [19] (MPS), known as context fun-
neling [&1)], allows us to concurrently execute multiple GPU
kernels on a GPU. The MPS redirects all the streams of the
running GPU applications to one GPU context in a service
process. Thus, the redirected GPU kernels run in one GPU
context simultaneously. The persistent threads approach [3]
can schedule GPU kernels requested from GPGPU applica-
tions. GPU applications add their GPU tasks to the work
queue and running thread blocks execute GPU tasks in the
work queue. Since all GPU tasks in these approaches run
in the same virtual address space, a GPU request from a
buggy or malicious GPU application can destroy or easily
hijack the other GPU kernel.

Note that device-level mechanisms for GPU preemption
are not a perfect solution to realize GPGPU application
consolidation. Although such preemption mechanisms are
powerful and supported by real-life GPUs [[4], recent re-
search literatures [21,29] report that the preemption involves
high latency due to processing a large amount of context
data such as GPU registers. Thus, frequent GPU context
switches significantly hurt applications’ performances.

3. GLoop

This paper presents GLoop, which allows us to host multi-
ple GPU eaters on a single GPU. Table 0 briefly summarizes
the comparison between GLoop and GPU resource managers
described in Sec. 2. To overcome the weakness of the ex-
isting GPU resource managers, we carefully designed GLoop
to achieve the following goals.

e Efficiently consolidates GPU eaters: GLoop con-
currently executes GPGPU applications on a shared
GPU. It schedules them for a short period but mini-
mizes GPU kernel launches like those of the persistent
threads model.

e Provides GPU resource isolation: GLoop isolates
GPU requests from GPGPU applications, which means
that a malicious or buggy GPGPU application does
not destroy other GPGPU applications’ contexts and
GLoop.

e Not modify proprietary GPGPU software stack:
GLoop works atop proprietary GPGPU device drivers
and GPGPU libraries. The current prototype runs on
the non-modified NVIDIA device driver and CUDA
SDK 7.5.

The key insight behind GLoop is to provide an event-
driven programming model for GPGPU applications’ devel-
opers, borrowing an idea from Node.js [2]. This model al-
lows us to concurrently execute multiple GPU applications
by scheduling their GPU requests at each callback execu-
tion. In addition, GLoop provides resource isolation among
GPU applications by executing their callbacks in their own
GPU contexts.

0 N e U AW N

o e e e
B W N = O ©

[
o

__device__ void performRead(
DeviceLoop* loop, uchar* scratch,
int fd, size_t cursor, size_t size) {
if (cursor < size) {
size_t sizeToRead = min(PAGE_SIZE, size - cursor);
auto callback = [=] (DeviceLoop* loop, int read) {
/.
performRead(loop, scratch, fd,
cursor + PAGE_SIZE * gridDim.x, size);
};
fs::read(loop, fd, cursor, sizeToRead, scratch, callback);
return;
}
fs::close(loop, fd, [=](DeviceLoop* loop, int err) { });
}

Figure 1: Example of GLoop-aware program, which reads a
file.

3.1 Programming Model

Event-driven Programming Model: GLoop-aware GPU

applications are composed of callbacks, each of which is as-
sociated with an event on the host such as an I/O operation
(file read, write etc.). When an event completes, GLoop ex-
ecutes the corresponding callback and unregisters it. GLoop
polls host event completions until all the remaining callbacks
are invoked. A typical program in GLoop registers a callback
before finishing its execution. The registered callback will
be invoked after the associated event happens. The callback
registers a new callback. The program does not finish until
all the registered callbacks are executed. In other words,
GLoop programming is a continuation-passing style (CPS)
where each callback represents the next control state. We
believe that GLoop is applicable to a broad range of GPU ap-
plications since direct style programs can be automatically
transformed to CPS-based ones.

An example program that reads a file is shown in Fig.0.
The function, performRead, reads a specified file up to size
bytes. We define a callback function, callback, in the C++
lambda style at line 6. This callback processes read data and
then performRead() executes again (line 6-10). The program
executes fs:iread(..., callback), which requests a file read to
the host and registers the passed callback. GLoop executes
the registered callback when the requested read completes.
Since performRead() is called in the callback, the running call-
back registers itself again via the fs::read() (line 11). These
steps are repeated until the file read size is equal to the size.

Coalesced API calls: GLoop adopts the coalesced API
calls, inspired by GPUfs [26] and GPUnet [3]. GPU pro-
grams use hierarchical parallelism where thread blocks have
a coarse-grained parallelism, and all the threads in each
thread block perform a single task. Because threads in a
thread block are executed in lock-step, divergent control
paths in a thread block cause severe performance degrada-
tion. This performance degradation happens when threads
execute different functions for host events in a callback. To
alleviate the performance degradation, GLoop forces threads
in a thread block to call the same APIs with the same argu-
ments at the same point in the application code.

3.2 Architecture

An overview of the GLoop architecture and GLoop-aware
GPU applications are illustrated in Fig. B. The main com-
ponents of GLoop are gloop scheduler, host event loop, and
device event loop. The gloop scheduler runs at the privileged
layer. The host event loops and device event loops are of-
fered by GLoop to GPU applications and run on a CPU and
GPU, respectively. GLoop is portable to various resource

GPU Context
Thread Block

Device Event Loop
GPU kernel | Register callback

_callback ﬁ/ =] (loop, fd) {
Launch VLaunch -

kernel 1 1 callback

Device-Host RPC| | Launch GPU kernel

fs open(

callback);

Gloop-aware N
Application V Host Event Loop

Scheduling Event Loops I

viaRPC | GLoop Scheduler

Figure 2: Overall architecture of GLoop.

shared environments. In a resource container-based system,
one possible setup is that the gloop scheduler runs on the
host OS as a service process, the host event loop in GPU
applications uses CPU slices assigned to their own contain-
ers, and their device event loop runs on the shared GPU.
In a VM system where a GPU is virtualized at the hyper-
visor [2X,B0], the gloop scheduler is inside the hypervisor,
and each loop of the GPU applications runs on virtualized
CPUs and the GPU of their VMs.

The gloop scheduler monitors GPU utilization of each
GPU application and makes a scheduling decision based on
its own policy. The gloop scheduler instructs host event
loops to suspend/resume GPU kernels so that an appropri-
ate GPU kernel can be executed. A GlLoop-aware applica-
tion establishes the GPU context. Since each GPU kernel
runs in its own GPU virtual address space, resource isola-
tion among applications on a GPU is naturally achieved. To
suspend/resume a GPU kernel, a host event loop commu-
nicates with the corresponding device event loops, each of
which is allocated per thread block. The device event loop
requests host resources to the host event loop, polls an event
completion, and executes the corresponding callback.

3.2.1 Gloop Scheduler and Host Event Loop

A GlLoop-aware application establishes a host event loop
and connects the loop to the gloop scheduler. The applica-
tion asks the host event loop to launch its GPU kernel. The
host event loop requests the token from the gloop scheduler
and starts the GPU kernel after receiving the token and its
slice. Also, the host event loop invokes a registered host-side
function corresponding to the event requested by the device
event loop. The host event loop notifies the device event
loop of the event completions. For example, when a GPU
kernel issues a file read request, the host event loop reads
the file, transfers the read data to device memory through
GPU DMA engines and notifies the device event loop of the
read completion through a host-device RPC.

The gloop scheduler sends suspend and resume requests
to the running host event loops based on its scheduling pol-
icy. When a host event loop requests execution of a GPU
kernel, the gloop scheduler sends suspend messages to the
currently running host event loop or waits until the running
kernel exhausts its slice. The gloop scheduler uses the points
of dispatching the callback function as a scheduling point.
The device event loop yields the GPU at the point if an ap-
plication has exhausted its slice or its host event loop has
received a suspend message. To switch the running GPU
kernel to another one, GLoop saves the callback’s states and

finishes the running GPU kernel. Then, the next host event
loop launches its GPU kernel. The host event loop requests
the gloop scheduler to relaunch the GPU kernel if pending
callbacks remain.

In the current design, GLoop kills GPU applications mo-
nopolizing a shared GPU or not requesting host events. The
gloop scheduler cannot suspend and resume such GPU ap-
plications since the GPU is a non-preemptive device. If the
underlying GPU offers GPU preemption at the device level,
we can preempt the GPU from the GPU applications instead
of killing them.

3.2.2 Device Event Loop

When a GPU kernel requests a host operation such as file
reads, the device event loop passes I/O requests to the host
event loop. The host event loop performs the requested op-
eration while the device event loop polls event completions.
The host event loop sends the event results to the device
event loop via a host-device RPC and the device event loop
invokes the corresponding callback function. For example,
in the case of reading a file, the device event loop requests
the host event loop to read a file and associates a callback
with its completion. While the host event loop performs
the requested file read, the device event loop polls the com-
pletion. When the device event loop finds out that the file
read is completed, it writes the transferred data back to a
specified buffer and invokes the associated callback.

GLoop offers two modes of device event loop to balance
a trade-off between the latency of I/O operation and GPU
resource consumption; the blocking-based mode and polling-
based mode. In the blocking-based mode, device event loop
stops the GPU kernel and relaunches it after device event
loop is notified of I/O completion. This mode leads to ef-
ficient utilization of GPU resources, but application perfor-
mance can become worse since a GPU kernel launch is a
time consuming operation [I3]. In the polling-based mode,
device event loop polls I/O completion on the GPU instead
of stopping/resuming the GPU kernel. In this mode, we can
minimize the latency of fetching I/O results since the GPU
kernel is not relaunched. On the other hand, polling the I/O
results consumes GPU resources. The polling-based mode
is effective in a situation where only one GPU application
runs on a system. When one of the running GPU appli-
cations is latency-sensitive, its device event loops and the
other loops are set to the polling-based and blocking-based
mode, respectively.

4. IMPLEMENTATION

We implemented a prototype of GLoop on Linux 3.16.0-41
with CUDA 7.5 for NVIDIA Kepler GPUs [¥]. The current
prototype is tailored to Linux container-based virtualized
environments, which means that GLoop-aware applications
in each container run on a shared GPU. We believe that the
concept of GLoop is applicable to other GPU-shared envi-
ronments such as GPU virtualization [2¥].

Our prototype consists of the gloop scheduler daemon and
the GLoop library. The gloop scheduler runs on the host.
The GLoop library is linked with GPGPU applications to
provide the host event loop and device event loop. Each
host event loop is connected with the gloop scheduler by
the POSIX inter-process communication functionality and
communicates with its device event loops through the host-
device remote procedure call (RPC).

4.1 GLoop Scheduler

The gloop scheduler manages the token of kernel execu-
tion, and the host event loop is required to acquire the to-
ken before executing any GPU kernels. When there is a
host event loop that attempts to acquire the token and it is
blocked longer than the threshold, the gloop scheduler sends
a suspend request to the active device event loop through
RPC. Once this request is received by the device event loop,
the device event loop saves its state, stops itself, and finishes
the GPU kernel. Then, the host event loop associated with
the stopped device event loops releases the token. The cur-
rent prototype selects 10 milliseconds for the threshold.

4.2 GLoop Library

The host-device RPC uses the producer-consumer model
on the top of the host-device shared memory. GLoop first
allocates host memory and maps it to the GPU virtual mem-
ory space to make it accessible from both the host and the
device. When the device event loop requests an RPC, the
device event loop writes RPC arguments and an identifier
(number) to this RPC memory. The host event loop polls
this memory, and once the host event loop finds the contents
of this memory are changed, it performs the requested RPC
based on the written arguments and the identifier. When
the host event loop finishes the requested RPC, it writes
back the completion to the RPC memory.

The device event loop saves registered callback states in
the callback slots every time GLoop APIs are called. Each
device event loop has a fixed-sized (64 slots in our prototype)
callback slots in the device memory. Each callback slot is
associated with the RPC memory. The device event loop
saves a callback in one of the unused callback slots and marks
the slot used. Then, the device event loop requests an RPC
using the RPC memory associated with the slot. At the
boundary of callback executions, the device event loop peeks
the RPC memory to find the completion. If the completion is
found, the device event loop clears the RPC completion and
invokes the associated callback. After the callback finishes,
the device event loop destroys the callback saved in the slot
and marks the invoked slot as unused.

When the device event loop is suspended, the device event
loop saves small pieces of the control information (e.g. the
bit flags that represent which callback slot is used) in the
device memory. The callback slots, the largest state of the
device event loop, are saved in the device memory so that
the slots are live after the kernel finishes. After the device
event loop is suspended, the GPU kernel exits. When the
next GPU kernel is launched from another GPU context, the
GPU hardware performs the context switch automatically.

S. PRELIMINARY EXPERIMENTS

We conduct experiments to answer the following ques-
tions: 1) is GLoop’s model effective for a GPU eater, 2)
is GLoop application’s performance reasonable, and 3) can
GLoop achieve GPU sharing between GPGPU applications?

We evaluate our prototype on a DELL PowerEdge T320
machine with eight Xeon E5-2470 2.3-GHz processors, 16-
GB memory and one 2-TB SATA hard disk. We use an
NVIDIA GTX 770 Kepler GPU with 2-GB GDDR5 memory.
We run Ubuntu 14.04 with Linux kernel 3.16.0-41, CUDA
SDK 7.5, and NVIDIA GPU driver 352.55. The hard disk
performance reported by hdparm is 9615.03 MB/s for tim-
ing cached reads and 150.98 MB/s for timing buffered disk

=70 63:29 63.23 6042
g 60
b Zg 4259425336937 39.98 39,91
£30 e
3 20
% 10 R e
=0
gpufs- gpufs vanilla gpufs- gpufs- vanilla- gloop- gloop
be be- tuned tuned be

tuned

Figure 3: Execution times of grep_text applications. Stan-
dard deviation is within 0.1% of mean.

reads.

The workload is executed eleven times, once for warming
up and ten times for getting results. The average of the
ten times is used in the measurements. All the experiments
invoke the CUDA grid, which consists of 28 thread blocks,
each of which has 128 threads.

5.1 Case Study: Grep

To show that the GLoop programming model is applica-
ble to the existing highly functional GPGPU applications,
we port an application grep_text, a GPUfs-based applica-
tion. The source code of GPUfs and its applications is down-
loaded from the project site®. Grep_text is an application
that counts the frequencies of English words. It searches for
58,000 words in the complete works of Shakespeare, which
is a single 6 MB file.

We successfully ported GPUfs-based grep_text to GLoop.
Similarly to the original one, thread blocks independently
search for a subset of the 58,000 words. Thread blocks re-
peatedly read a chunk of text. For each word, thread blocks
perform string matching on the chunk to count the word fre-
quencies. If a given word appears more than once, a thread
block logs this to an output file. While the original code
uses a loop to iterate words, the ported code uses an event
loop callback to iterate words. The callback performs string
matching of one word on the text chunk and enqueues the
callback with the next word to the event loop. This in-
serts enough scheduling points to the ported program. When
string matching succeeds, the program enqueues the callback
with the file write operation to log the result. Otherwise, it
just enqueues the event loop callback.

To demonstrate the GLoop-aware application’s performance,

we compare several versions of grep_text’s execution time.
We prepare GPUfs- and GLoop-based grep_text labeled gpufs
and gloop. For comparison, we also prepare a workload that
preallocates large GPU device memory to transfer all the
dataset before starting the GPU kernel, named vanilla. We
prepare gpufs and vanilla optimized for our GPU, each of
which are postfixed with -tuned. We modify the source code
of the downloaded GPUfs to run on our GPU. Specifically,
we changed the GPUfs memory pool size and the CUDA
malloc heap size limit from 2 GB to 1 GB and from 1 GB to
256 MB, respectively. We also measured the execution time
of our grep_text family with cold buffer caches. These are
labeled gpufs-be, gpufs-be-tuned, and gloop-be.

The results are shown in Fig. B. From the graph, we can
see that performance of the gloop is comparable to the other
grep_text implementations. The gloop outperforms the un-
tuned versions and it is 5% slower than vanilla-tuned and
6% faster than gpufs-tuned. The difference in the execu-
tion times under the cold buffer cache is negligible. Gpufs-
be, gpufs-be-tuned, and gloop-be are 0.1-0.2% slower than

L https://github.com/gputs/gputs

SN A O ® D

Execution time (s)

Execution time (s)

alone concu- concu-
rrentl rrent2

(a) throttle (b) copylGB (c) copylGB-BC
Figure 4: Execution time of each application. alone occupies
GPU, while concurrent! and concurrent2 run concurrently
on one shared GPU.

alone concu- concu-
rrentl rrent2

alone concu- concu-
rrent] rrent2

gpufs, gpufs-tuned, and gloop, respectively. Since grep_text
repeatedly reads the same set of files, buffer cache miss does
not occur except for the first read.

5.2 Consolidating Two GPU Applications

To show GLoop interleaves kernel executions, we run two
GPGPU applications on a GPU. We prepare three work-
loads: throttle, copylGB, and copyl GB-BC. Throttle per-
forms event loop callbacks 100,000 times while copyl1GB and
copylGB-BC copy a 1 GB file with and without the warm
buffer cache. We first run each workload in the standalone
manner (alone) and then run two instances of the same
workload concurrently (concurrent! and concurrent2).

The results are shown in Fig. B. The x-axis is the workload
name and the y-axis is the execution time. The execution
times of concurrentl and concurrent2 are almost the same
in throttle and copy1GB (8.72s and 8.78s for throttle, 1.47s
and 1.45 for copylGB). In the copylGB-BC case, the two
execution times are different due to I/O time variance. The
standard deviations of the copylGB-BC case are up to 13%
of the mean. Since GLoop switches their kernels in a fine-
grained manner, the GPGPU applications are not executed
serially.

We can also see that the execution times of concurrentl
and concurrent2 in throttle are more than double the ex-
ecution time of the alone case, 2.07 times and 2.08 times,
respectively. This is the overhead caused by suspending and
resuming the device event loop to interleave kernel execu-
tions. On the other hand, the concurrent execution times
in copylGB are smaller than the doubled alone time, 1.73
times and 1.71 times, respectively. This is because splited
thread blocks can utilize GPU computing cores more. In the
copylGB-BC case, the execution times of concurrentl and 2
become slower than the doubled alone time, 2.78 times and
3.21 times. This performance degradation comes from the
disk contention caused by I/O requests of the two kernels.

6. CONCLUSION

This paper presents GLoop, which offers an event-driven
programming model for the GPGPU kernel. GlLoop sus-
pends and resumes the GPU kernels at the boundary of
the callback executions and achieves GPU resource isola-
tion among multiple GPU kernels by establishing a GPU
context per kernel.

Designing scheduling policies is one of the most important
tasks. To effectively schedule more than two GPGPU ap-
plications, scheduling policies such as budget-based policies
are needed. To do so, scheduling the utilization of the GPU
DMA engines needs to be considered. Applying our pro-
gramming model to other GPU eaters is also an interesting
challenge. For example, we explore a way to port GPUnet-
based applications or applications based on the persistent
threads model to our model.

https://github.com/gpufs/gpufs

REFERENCES

AGRAWAL, S. R., AND LEBECK, A. R. Rhythm :
Harnessing Data Parallel Hardware for Server
Workloads. In Proc. of the 19th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (2014), ACM, pp. 19-34.
FounDpATION, N. Node.js. https://nodejs.org, 2016.
GupTA, K., STUART, J. A., AND OWENS, J. D. A
Study of Persistent Threads Style GPU Programming
for GPGPU Workloads. In Proc. of the Innovative
Parallel Computing (2012), IEEE, pp. 1-14.

HAN, S., JaNnG, K., PARK, K., AND MOON, S.
PacketShader: A GPU-Accelerated Software Router.
In Proc. of the ACM SIGCOMM 2010 Conf. (2010),
ACM, pp. 195-206.

HE, B., Yang, K., Fang, R., Lu, M.,
GOVINDARAJU, N., LUuo, QQ., AND SANDER, P.
Relational Joins on Graphics Processors. In Proc. of
the 2008 ACM SIGMOD Int’l Conf. on Management
of Data (2008), ACM, pp. 511-524.

HirABAYASHI, M., KaTO, S., EDAHIRO, M., TAKEDA,
K., Kawano, T., AND MiTA, S. GPU
Implementations of Object Detection using HOG
Features and Deformable Models. In Proc. of the 1st
Int’l Conf. on Cyber-Physical Systems, Networks, and
Applications (2013), IEEE, pp. 106-111.

Jang, K., Han, S., HAN, S., MOON, S., AND PARK,
K. SSLShader: Cheap SSL Acceleration with
Commodity Processors. In Proc. of the 8th USENIX
Conf. on Networked Systems Design and
Implementation (2011), USENIX, pp. 1-14.
KALDEWEY, T., LOHMAN, G., MUELLER, R., AND
VoLK, P. GPU Join Processing Revisited. In Proc. of
the 8th Int’l Workshop on Data Management on New
Hardware (2012), ACM, pp. 55-62.

KaAro, S., AUMILLER, J., AND BRANDT, S. Zero-copy
I/0 processing for low-latency GPU computing. In
Proc. of the 4th Int’l Conf. on Cyber-Physical Systems
(2013), ACM/IEEE, pp. 170-178.

KaTo, S., LAKSHMANAN, K., RAJKUMAR, R., AND
IsHIKAWA, Y. TimeGraph: GPU Scheduling for
Real-Time Multi-Tasking Environments. In Proc. of
the 2011 USENIX Annual Technical Conf. (2011),
USENIX, pp. 17-30.

Kato, S., McTurOW, M., MALTZAHN, C., AND
BRANDT, S. Gdev: First-Class GPU Resource
Management in the Operating System. In Proc. of the
2012 USENIX Annual Technical Conf. (2012),
USENIX, pp. 401-412.

Kim, C., CHHUGANI, J., SATISH, N., SEDLAR, E.,
NGuYEN, A. D., KALDEWEY, T., LEE, V. W_|
BRANDT, S. A., AND DUBEY, P. FAST: Fast
Architecture Sensitive Tree Search on Modern CPUs
and GPUs. In Proc. of the 2010 Int’l Conf. on
Management of Data (2010), ACM, pp. 339-350.
KM, S., Hul, S., ZHang, X., Hu, Y., WATED, A,
WITCHEL, E., AND SILBERSTEIN, M. GPUnet:
Networking Abstractions for GPU Programs. In Proc.
of the 11th USENIX Conf. on Operating Systems
Design and Implementation (2014), USENIX,

pp. 201-216.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

Kvyriazis, G. Heterogeneous System Architecture: A
Technical Review. In Technical report (2012), AMD.
MARUYAMA, N., NoMURA, T., SaT0, K., AND
MATSUOKA, S. Physis: An Implicitly Parallel
Programming Model for Stencil Computations on
Large-Scale GPU-Accelerated Supercomputers. In
Proc. of the 2011 Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis (2011),
ACM, pp. 11:1 —11:12.

McNAUGHTON, M., UrMSON, C., DOLAN, J. M.,
AND LEE, J.-W. Motion Planning for Autonomous
Driving with a Conformal Spatiotemporal Lattice. In
Proc. of the 2011 Int’l Conf. on Robotics and
Automation (2011), IEEE, pp. 4889-4895.
MEeNYCHTAS, K., SHEN, K., AND ScoTT, M. L.
Disengaged scheduling for fair, protected access to fast
computational accelerators. In Proc. of the 19th Int’l
Conf. on Architectural Support for Programming
Languages and Operating Systems (2014), ACM,

pp. 301-316.

NVIDIA. NVIDIA’s next generation CUDA computer
architecture: Kepler GK110. http://www.nvidia.com/,
2012.

NVIDIA. Multi-Process Service.
https://docs.nvidia.com/deploy/pdt/CUDA_Multi_
Process_Service_Overview.pdf, 2015.

Pa1, S., THAZHUTHAVEETIL, M. J., AND
GOVINDARAJAN, R. Improving GPGPU concurrency
with elastic kernels. In Proc. of the 18th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (2013), vol. 41, ACM, p. 407.
PaArk, J. J. K., PARK, Y., AND MAHLKE, S.
Chimera: Collaborative Preemption for Multitasking
on a Shared GPU. In Proc. of the 20th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (2015), ACM, pp. 593-606.

RarH, N., BiaLek, J., BYrnE, P. J., DEBono, B.,
LEVESQUE, J. P., L1, B., MAUEL, M. E., MAURER,
D. A., NAVRATIL, G. A., AND SHIRAKI, D.
High-speed, multi-input, multi-output control using
GPU processing in the HBT-EP tokamak. Fusion
Engineering and Design (2012), 1895-1899.
RossBacH, C. J., CURREY, J., SILBERSTEIN, M.,
RAy, B., AND WITCHEL, E. PTask: Operating
System Abstractions To Manage GPUs as Compute
Devices. In Proc. of the 23rd Symp. on Operating
Systems Principles (2011), ACM, pp. 233-248.
SatisH, N., Kim, C., CHHUGANI, J., NGUYEN, A. D.,
LEg, V. W., KiMm, D., AND DUBEY, P. Fast Sort on
CPUs and GPUs: A Case for Bandwidth Oblivious
SIMD Sort. In Proc. of the 2010 Int’l Conf. on
Management of Data (2010), ACM, pp. 351-362.
SHIMOKAWABE, T., Aoki, T., Takaki, T., Expo, T.,
YAMANAKA, A., MARUYAMA, N., NUKADA, A., AND
MATSUOKA, S. Peta-scale Phase-Field Simulation for
Dendritic Solidification on the TSUBAME 2.0
Supercomputer. In Proc. of the 2011 Int’l Conf. for
High Performance Computing, Networking, Storage
and Analysis (2011), ACM, pp. 3:1-3:11.
SILBERSTEIN, M., FORD, B., KEIDAR, 1., AND
WitcHEL, E. GPUfs: Integrating a File System with
GPUs. In Proc. of the 18th Int’l Conf. on

https://nodejs.org
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

Architectural Support for Programming Languages and
Operating Systems (2013), ACM, pp. 485-498.

Sun, W., Ricci, R., AND CURRY, M. L. GPUstore.
In Proc. of the 5th Annual Int’l Systems and Storage
Conf. (2012), ACM, pp. 1-12.

Suzukl, Y., Karto, S., YAMADA, H., AND Kono, K.
GPUvm: Why Not Virtualizing GPUs at the
Hypervisor? In Proc. of the 2014 USENIX Annual
Technical Conf. (2014), USENIX, pp. 109-120.
Tanasic, 1., GELADO, 1., CABEzAS, J., RAMIREZ, A.,
NAVARRO, N.; AND VALERO, M. Enabling preemptive
multiprogramming on GPUs. In Proc. of the 41st Int’l
Symp. on Computer Architecture (2014), ACM/IEEE,
pp. 193-204.

Tian, K., DoNG, Y., AND COWPERTHWAITE, D. A
Full GPU Virtualization Solution with Mediated
Pass-Through. In Proc. of the 2014 USENIX Annual
Technical Conf. (2014), USENIX, pp. 121-132.
Wang, L., HuaNG, M., AND EL-GHAzZAWI, T.
Exploiting Concurrent Kernel Execution on Graphic
Processing Units. In Proc. of the Int’l Conf. on High
Performance Computing and Simulation (2011),
IEEE, pp. 24-32.

ZENO, L., MENDELSON, A., AND SILBERSTEIN, M.
GPUpIO: The Case for I/O-Driven Preemption on
GPUs. In Proc. of the 9th Annual Workshop on
General Purpose Processing using Graphics Processing
Unit (2016), ACM, pp. 63-71.

	Introduction
	Motivation
	GPU Eaters
	Previous Work

	GLoop
	Programming Model
	Architecture
	Gloop Scheduler and Host Event Loop
	Device Event Loop

	Implementation
	GLoop Scheduler
	GLoop Library

	Preliminary Experiments
	Case Study: Grep
	Consolidating Two GPU Applications

	Conclusion
	References

